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AbstractÐThis article introduces a new tool for exploratory data analysis and data mining called Scale-Sensitive Gated Experts

(SSGE) which can partition a complex nonlinear regression surface into a set of simpler surfaces (which we call features). The set of

simpler surfaces has the property that each element of the set can be efficiently modeled by a single feedforward neural network. The

degree to which the regression surface is partitioned is controlled by an external scale parameter. The SSGE consists of a nonlinear

gating network and several competing nonlinear experts. Although SSGE is similar to the mixture of experts model of Jacobs et al. [10]

the mixture of experts model gives only one partitioning of the input-output space, and thus a single set of features, whereas the SSGE

gives the user the capability to discover families of features. One obtains a new member of the family of features for each setting of the

scale parameter. In this paper, we derive the Scale-Sensitive Gated Experts and demonstrate its performance on a time series

segmentation problem. The main results are: 1) the scale parameter controls the granularity of the features of the regression surface,

2) similar features are modeled by the same expert and different kinds of features are modeled by different experts, and 3) for the time

series problem, the SSGE finds different regimes of behavior, each with a specific and interesting interpretation.

Index TermsÐMixture of experts, mixture model, classification and regression, time series segmentation, neural networks.

æ

1 INTRODUCTION

WE give an algorithm which learns to carve the joint
input-output space into partially overlapping regions

depending on the magnitude of a scale parameter and then
builds a local model for each feature. Other models such as
the mixture of experts model suggested by Jacobs et al. [10]
do not allow for an external adjustment of the strength of
associating an input-output pair to a local model. The scale-
sensitive gated experts (SSGE) implicitly allows for a
hierarchy of features to develop: global features (which
correspond to small values of the scale parameter) subsume
local features (which correspond to large values of the scale
parameter). The features may be complex nonlinear
surfaces from disjoint regions in the input-output space
and are modeled by a set of expert networks, whose task is
to predict the value at the regression surface given the
input, and a gate network, whose task is to learn to associate
inputs with particular experts.

The sensitivity of the algorithm to the scale of features in
the input-output space is governed by the scale parameter.
For small values of the scale parameter, global features are
extracted, whereas for large values of the scale parameter,
local features are extracted. Thus, the scale parameter
defines the level of coarseness, or granularity of the features
that the algorithm extracts. We call the process of sweeping

from global to local features feature refinement. The scale
parameter arises naturally in the derivation of the model:
we do not arbitrarily add a parameter to the model. The
algorithm is governed by an important quantity called the
association probability which governs the probability of
associating an input-output pair with a local model or
expert. The association probability is parametrized by the
scale parameter and is derived by making very general
assumptions about the data.

The intended application area for this algorithm is in
exploratory data analysis and data mining. In these fields,
the characteristics of a correct or optimal solution is often
not known, and the analyst must systematically search
through a series of solutions to understand the nature of the
data space. As one views the results for different values of
the scale parameter, a better understanding of the
complexity of the data space often results.

1.1 Structure of Article

Section 2 discusses the application of SSGE to time series
segmentation problems. These problems motivate the
development of this algorithm. Section 3 derives the SSGE
association probabilities using the principle of maximum
entropy and interprets them as a function of the scale
parameter. We compare the association probabilities
derived here with those obtained in the standard gated
experts architecture.

Section 4 derives the corresponding cost function. We
prove that the minimum of this cost function corresponds to
the most probable set of associations. Next, parameter
update rules are given for the nonlinear and linear case. The
following section demonstrates the SSGE on a time series
segmentation problem: a computer generated time series
which undergoes regime switches. Section 7 summarizes
the Scale-Sensitive Gated Experts and suggests future areas
of research.

1268 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 12, DECEMBER 1999

. A.N. Srivastava is with the Deep Computing Consulting Group, IBM
Almaden Research Center, San Jose, CA 95120.
E-mail: ashoks@almaden.ibm.com

. R. Su is with the Department of Electrical and Computer Engineering,
University of Colorado, Boulder, CO 80309-0529.
E-mail: sur@colorado.edu.

. A.S. Weigend is with Emotioneering, Inc., 2260 Forestview Ave.,
Hillsborough, CA 94010. E-mail andreas@weigend.com.

Manuscript received 6 May, 1998; revised 8 Sept. 1999.
Recommended for acceptance by I. Sethi.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 107836.

0162-8828/99/$10.00 ß 1999 IEEE



1.2 Related Work

The SSGE has intimate ties with two other model classes:
mixture models [10] and clustering models [16], [6], [13]. In
this section we briefly discuss these two model classes and
compare with the SSGE.

Jacobs et al. [10] introduced mixture models to the
connectionist community, where the output of the system is
a weighted sum of expert outputs and each expert is a
regression model. The weights sum to one and indicate the
probability that a particular expert is appropriate given the
input. These models were subsequently developed into
hierarchical mixtures of linear experts by Jordan and Jacobs
[11]. Weigend et al. [22] applied the mixture of experts
model to time series problems. These mixture models do
not give the user any control over the degree that the
input-output space is partitioned.

Rose et al. [16] give a method to perform clustering while
giving the user control over the granularity of the clusters.
They introduce a method called Thermodynamic Clustering,
where the probability of assigning a particular data point to
a cluster is a function of a scale parameter. For small values
of the parameter, this model allows a data point to be
captured by more than one cluster, thus allowing for soft-
clustering. On the other hand, for large values of the
parameter, the model forces a hard-clustering: a data point
can only be assigned to a single cluster [23].

Related work from the connectionist community include
Durbin and Willshaw [4] which is a special case of gated
experts with the variance annealed. They applied their
architecture to the Traveling Salesman Problem. Pawelzik
et al. [13] and Fancourt and Principe [5] applied the
annealed variance gated experts to time series problems.
An important distinction in the former case from the
present is that the gate network in Pawelzik et al. [13] is not
a function of the input. Also see Jacobs and Jordan [9] for
applications to control.

The SSGE represent a marriage between the idea of
mixture models and the idea of thermodynamic clustering.
Interesting comparisons between the gated experts models
discussed here and the hidden markov model can be found
in Shi [18].

2 APPLICATIONS TO TIME SERIES SEGMENTATION

PROBLEMS

The SSGE can be applied to any data analysis problem
where input-output data are available. Consider, for
example, the problem of predicting a univariate time series
fdtgTt�1. A standard prediction method relies on the concept
of embedding [20], where the next value in the series, dt is
expressed as a function of the last p values, �dtÿ1; . . . ; dtÿp�.
The lagged values form a set of inputs and the values to be
predicted form a set of outputs. The prediction problem is
defined as learning a regression surface which maps the
inputs to the outputs. The SSGE learns this regression
surface and also partitions the surface into different regions
depending on the setting of the scale parameter.

In this paper, we use the SSGE to analyze multistationary
time series, i.e., time series which arise from a data
generating process that switches its mode of behavior. This
switch could manifest as a shift in the mean, variance, or

some other statistic and it indicates that the underlying
dynamics of the data generating process has changed. We
assume that the change in regime is observable in the time
series, and thus will appear in the embedding space as a
variation in the regression surface.

A key problem in the analysis and prediction of such
systems is to identify these so-called regime shifts: when a
shift occurs and what quantity changed. The process of
identifying the times at which a shifts occur is known as
time series segmentation. These segments could be short
time intervals compared to the time scale of the series or
relatively long time intervals. In either case, the segments
that we consider are intervals of arbitrary duration in time.
Basseville and Nikiforov [1] give an excellent review of
methods for predicting and detecting regime shifts.
Weigend et al. [22] applied the mixture of experts model
to the double nonlinear case, where the both the gate and
expert networks are nonlinear feed-forward neural net-
works to time series problems. The statistics community
first introduced the idea of modeling a regime shift [14] by
assuming a mixture model where the output is a weighted
sum of expert outputs and the weights sum to unity and
indicate the probability that the system is dwelling in a
particular regime.

To apply the SSGE to time series segmentation, we make
the following assumptions:

. We assume that the next value of the time series can
be expressed as a nonlinear combination of past
values and other relevant quantities. This assump-
tion allows us to model the time series as a
regression problem where the task is to learn a
potentially nonlinear mapping from inputs to
outputs.

. We assume that the dynamics of the time series is
unknown and that it must be inferred from the
input-output mapping.

. We assume that the segmentation is unknown
apriori and that it can be inferred from the input-
output data.

For many real-world time series segmentation problems,
the analyst often does not know whether or not there is a
correct segmentation, and how many different segments (or
regimes) exist. To our knowledge, for a given model
configuration, current time series segmentation procedures
give a single segmentation without giving the analyst any
other possible segmentations. The SSGE is a tool especially
designed to give the user the ability to sweep through a
wide range of possible segmentations, after which the user
can choose a segmentation that matches the task at hand.

The SSGE attacks the time series segmentation problem
by:

. Computing the probability that an input-output pair
arose from a particular regime. Since each regime is
modeled by a single expert, this probability is
equivalent to the probability of associating an
input-output pair to a particular expert.

. This so-called association probability is a function of
an external scale-parameter which governs the
strength of the association. These associations, in
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turn, produce the segmentation of the time series in
the sense that a plot of the association probabilities
as a function of time indicates the segmentation.

. Learning the underlying dynamics of each segment
via local nonlinear regression (expert networks).

. Learning to predict the association probabilities from
the input alone (gate network), and not relying on
the output. This is necessary because the output is
unavailable during model testing and verification.

3 DEVELOPMENT OF THE SCALE-SENSITIVE GATED

EXPERTS

The SSGEs operation is governed by a quantity called the
association probability, which is the probability of associat-
ing an input-output pair to a particular expert (or local
model). Several local models can share a given input-output
pair, thus yielding a soft classification. The association
probability is a function of the error between an expert's
prediction of the output (given the input) and the actual
output value. This probability is also a function of an
external parameter � that adjusts the strength of the
associations and thus the coarseness of the features. In this
section, we derive the association probabilities.

We begin by defining the variables we use:

. x is the input vector

. d is the target (or ªdesired output valueº)

. yj�x� is the output of expert j (corresponds to the
mean of the Gaussian). We assume a univariate
model although the theory readily generalizes to
multivariate outputs.

. �j is the standard deviation of the Gaussian
represented by expert j

. P �Y � y j x; j� is the probability density associated
with the jth expert for the stochastic variable Y to
take the value y

. gj�x� is the output of the gating network, denoting
the probability that a given pattern is generated by
the jth expert, given the input x; i.e., gtj � P �st � jxt�

. Hj��;x; d; yj� is the posterior probability of the jth
expert, given the output yj and the pattern, i.e., input
x, target d. This is also called the association
probability, or the probability of associating an
input-output pair to a particular expert,

. � denotes the scale parameter,

. st � j denotes the event that the tth pattern is
generated by the jth expert (1 � j � K)

. t is the pattern index

. T is the total number of patterns

. �j and �g denote the set of parameters of expert j
and the gate, respectively.

For notational simplicity, in many of the equations to
follow, we supress the explicit dependence of the variables
on the parameters and inputs. Thus, instead of writing
gj�xt;�g�, we may write gtj.

3.1 Derivation of the Association Probability

Suppose we define a per-pattern error function

Et
j � ÿ log�P �st � j; dt j xt�;

which denotes the complete negative log-likelihood of the
data given the input. The errorfunction Et

j denotes the cost
of associating the tth input-output pair to the jth expert. We
expand the error function to obtain

Et
j � ÿ log�P �st � j; dt j xt� �1�

� ÿ log�P �st � j j xt�P �dt j st � j;xt�� �2�

� ÿ log�gtjP �dt j st � j;xt��: �3�
Thus, for a given j, the error function factors into two
additive terms: a classification error and a regression error:

Et � Et
C � Et

R �4�
The classification error Et

C � ÿ logP �st � j j xt� is the
negative log likelihood of choosing a particular expert given
the input. The regression error Et

R � ÿ logP �dt j st � j;xt� is
related to the probability of observing the desired value dt

given the input and the choice of the jth expert.
To obtain the association probabilities, we use the

principal of maximum entropy for the following reasons:

. We have no model for the distribution of the correct
association probabilities.

. We have two constraints, namely that the average
error of the model is finite, and that the sum of the
probabilities is equal to unity.

Given these constraints, the most likely model for the
association probabilities is the one whose distribution is
closest to a uniform distribution, which is the solution to the
maximum entropy problem.

To obtain the association probabilities using a maximum
entropy framework, we have the following optimization
problem to solve. We desire to maximize the entropy

S � ÿ
XT
t�1

XK
j�1

Ht
j logHt

j �5�

subject to the following two constraints:

XK
j�1

Ht
j � 1 8 t �6�

< E >�
XT
t�1

XK
j�1

Et
jH

t
j: �7�

The association probability is computed according to the
principle of maximum entropy to avoid making further
assumptions about the nature of the distribution. We solve
this problem using the standard theory of Lagrange
multipliers and obtain the ªcanonicalº or Gibbs distribution
which is parametrized by a scale parameter � [7], [19], [2]:

Ht
j��� �

exp�ÿ�Et
j�PK

k�1 exp�ÿ�Et
k�
: �8�
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Assuming a Gaussian noise model, the final result is:

Ht
j��� �

exp�ÿ�Et
j�PK

k�1 exp�ÿ�Et
k�

�9�

�
gtjP �dt j st � j; xt�
� ��

PK
k�1 g

t
kP �dt j st � k; xt�

ÿ �� �10�

�
�gj�xt; �g��� 1�������

2��2
j

p exp ÿ dtÿyj�xt;�j�� �2
2�2

j

� �" #�
PK

k�1 �gk�xt; �g��� 1�������
2��2

k

p exp ÿ dtÿyk�xt ;�k�� �2
2�2

k

� �� �� :
�11�

3.2 Interpretation of the Association Probability and
Scale Parameter

We now discuss the effect � has on the association
probabilities. Consider the ratio of the probabilities of
associating the tth pattern with two different experts, j,
and k:

Q��E� � P �st � j j xt; dt�
P �st � k j xt; dt� � exp���Et

j ÿEt
k��: �12�

For small �, the difference in error between two states is
reduced. Thus, a pair �xt; dt� is easily associated with more
than one expert. On the other hand, for large �, the
difference in error between two states gets magnified and so
a pair �xt; dt� is associated with that expert which minimizes
the error. Thus, the scale parameter �:

. adjusts the probability of associating an input-
output pair to a particular local model;

. sets the strength of association. Larger values bias
the model towards a ªbinaryº configuration, where
only one expert is used to model the data; and

. naturally arises from the maximum entropy
formulation as a Lagrange multiplier.

3.3 Comparison with Gated Experts

Now that we have an equation for the association
probabilities, we can analyze it and compare it to
association probabilities derived for the Gated Experts [22],

htj � hj xt; dt; yj�xt; �j�; gj�xt; �g�
ÿ � �13�

�
gj�xt; �g� 1�������

2��2
j

p exp ÿ dtÿyj�xt;�j�� �2
2�2

j

� �
PK

k�1 gk�xt; �g� 1�������
2��2

k

p exp ÿ dtÿyk�xt;�k�� �2
2�2

k

� � : �14�

We find that (14) and (11) are identical, except for the
parameter �, and that if we take � � 1 in (11) we obtain the
same association probabilities. Thus, the maximum entropy
case reduces to the maximum likelihood case for � � 1. The
parameter � indicates our prior assumption on the
probabilities. Fig. 1 indicates the effect of � on the
association probability given in (14).

We note that the equation given in (14) is a standard

mixture equation that arises in a number of sciences,

including fuzzy logic, statistical physics, and neural net-

works. See [8] for a good discussion on this equation in

other domains.

4 OBTAINING THE MOST PROBABLE

ASSOCIATIONS: DERIVATION oF THE COST

FUNCTION

4.1 Maximizing the Association Probabilities

Given the method to compute the association probabilities

Ht
j���, we turn our attention to the problem of computing

the parameters which maximize the association probability.

This cost function turns out to be nothing other than the

thermodynamic free energy.
Suppose we have a set of parameters

� � f�jg 8 j � 1 . . .K

and we wish to maximize the probability of these

parameters given the data. We can follow a maximum

likelihood framework [15], [3], [12], [17] in order to compute

the cost function. Instead, we follow a maximum entropy

derivation which closely follows those given in [16]. We

introduce a set of indicator variables:

Itj �
1 if pattern t is generated by the jth expert
0 otherwise

�
�15�

that identify which regime the tth pattern belongs to.

Taking the set of indicator variables for all patterns and

regimes I � fItjg and assuming an error function Et
j, the
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total error for all patterns and associations is defined as
D��; I�, and is given by:

D��; I� �
X
t

X
j

ItjE
t
j: �16�

We compute the joint probability P ��; I�, which is the
probability of observing a model � and the regimes I
together, using the maximum entropy framework discussed
earlier and obtain the following Gibbs distribution:

P ��; I� � exp�ÿ�D��; I��P
�

P
I exp�ÿ�D��; I�� �17�

� exp�ÿ�D��; I��
�

: �18�

Where � is the denominator of (17).
Our goal is to compute the most likely set of parameters;

the parameters which maximize these probabilities yields
the most likely set of associations. We, therefore, need to
maximize the probability P ���.

P ��� �
X
I

P ��; I�: �19�

To obtain this distribution, we marginalize the distribution
given in (17) with respect to the indicator variable.

This sum is taken over all possible associations, where a
ªpossibleº association is defined as one in which a only
single expert generates an output dt. Thus, this assumption
voids the possibility of more than one expert predicting an
output. For example, for the tth pattern, the sum is taken
over each of the K possible associations:

It1 � 1; Itj � 0 8 j 6� 1 �20�

It2 � 1; Itj � 0 8 j 6� 2 �21�

..

. �22�

ItK � 1; Itj � 0 8 j 6� K �23�
The distribution P ��� is computed by the following

straightforward computations:

P ��� �
X
i

P ��; I� �24�

� 1

�

X
I

exp�ÿ�D��; I�� �25�

� 1

�

X
I

exp�ÿ�
X
t

X
k

ItkE
t
k� �26�

� 1

�

X
I

Y
t

exp�ÿ�
X
k

ItkE
t
k� �27�

� 1

�

Y
t

X
k

exp�ÿ�Et
k� �28�

� 1

�
Z��� �29�

� Z���P
� Z���

: �30�

The last equality arises from inspection of (17). Choosing a

function F as:

F � ÿ 1

�
logZ���: �31�

allows and substituting this expression into (30), we obtain

the important relation:

P ��� � Z���P
� Z���

�32�
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plot in the second panel indicates that they are separable. (Reprinted with permission, Weigend et al. [22]).



� exp�ÿ�F �P
i exp�ÿ�F � : �33�

This equation shows that to obtain the most likely set of

parameters, we need to minimize the function F , which is

known as the free energy in statistical mechanics.

The expression for the free energy for the Scale-Sensitive

Gated Experts is:

F �ÿ 1

�

XT
t�1

ÿ ln

XK
j�1

gj�xt; �g�� 1����������
2��2

j

q exp ÿ dt ÿ yj�xt; �j�
ÿ �2

2 �2
j

 !0B@
1CA
�264
375:
�34�

We estimate the parameters �g, �1, �2, � � � , �K , �1, �2, � � � , �K
by minimizing the free energy function F with respect to

the parameters.
The derivation of the free energy above assumes that a

single local model is responsible for a particular input-

output pair. We know that for large �, the association

probabilities behave in a winner-take-all manner and, thus,

the assumption is satisfied. For moderate or small values of

the scale parameter, however, (12) indicates that more than

one expert can share an input-output pattern.

4.2 Derivation of the Parameters Updates for the
Nonlinear Case

The SSGE model is a nonlinear model: Thus, we cannot

obtain analytical solutions for the optimal values of the

parameters of the gate and expert networks. Instead, we

obtain a weight update rule and use a method such as

gradient descent or BFGS to optimize the cost function.
We give the weight update rules and discuss some

implications. The weight update rules are computed by

taking the gradient of the cost function F with respect to the

parameters. For the expert network, we have:

@F

@�j
�
XT
t�1

Ht
j���

1

�2
j

�dt ÿ ytj�
@ytj
@�j

: �35�
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specialization.



Notice that this equation retains the traditional weight
update form for a single neural network trained on sum-
squared error with a linear output unit (the appropriate
linking function for the sum-squared error criterion). This
update is weighted by the ratio of the � parametrized
association probability and the confidence in the expert �2

j .
In the limit that the association probabilities are binary, the
gradient is nonzero only if the jth expert is appropriate for
the given set of dynamics. Other expert networks remain
unchanged.

The gate network has an interesting update rule, given
by the following formula:

@F

@�g
� ÿ

XT
t�1

Ht
j����1ÿ gtj�xt: �36�

Comparing this update rule to the one given in the standard
EM algorithm (see [22]), we find that there is a difference
between the update equations. Instead of obtaining a
difference between the target H and the gate output g, as
in the traditional EM setting, we obtain a slightly different
comparison of the two values. Operationally, though, these
methods produce similar results.

4.3 Derivation of the Optimal Parameters for the
Linear Case

Although the SSGE model is a nonlinear model, it is
instructive to compute the parameter updates for the linear
case. This gives us an indication for how the SSGE model
might behave in the nonlinear case. These equations are
computed by taking the appropriate derivative of the F
function, setting it equal to zero, and solving for the
parameters. We give the final results of these calculations
below. The expert parameters are computed as follows:

@F

@�j
� 0) �37�

�j �
XT
t�1

Ht
j���xt�xt�T

" #ÿ1 XT
t�1

Ht
j���dtxt

" #
: �38�

This equation shows that the regression parameters are
the solution to a least squares problem where the input and

target values are weighted by the association probability.
Therefore, if the association probabilities are binary
(which occurs with a large value of �), the regression
parameters are solely a function of the subspace that is
appropriate for the expert. There is, therefore, no sharing
of the subspaces between experts.

We next derive the variance �2
j for the jth expert. This is

computed according to:

@F

@�2
j

� 0) �39�

�2
j �

PT
t�1 H

t
j����dt ÿ ytj�2PT
t�1 H

t
j���

: �40�

This equation is identical to the equation obtained for the
traditional gated experts model and shows that the variance
is simply the weighted sum of squares of the errors between
the desired value and the predicted value for the kth expert.
This result is independent of whether or not the model is
linear.

The parameters for the gate, �gj are next derived, which
are the parameters of the gate network for the jth output.
Again, taking the appropriate partial derivative we have:

@F

@�gj
� ÿ

XT
t�1

Ht
j����1ÿ gtj�xt �41�

) �gj �
XT
t�1

Ht
j���xt�xt�T

" #ÿ1 XT
t�1

Ht
j���xt

" #
: �42�

In gradient descent optimization, the value of gtj is drawn
to the value of Ht

j���. To see this, consider the situation
where the value of Ht

j��� is equal to unity. In this case, the
gradient is equal to zero only if gtj moves toward unity.
Since the sum of the g's equals unity, the other values of
gtk; k 6� j are driven to zero.

4.4 Training

The SSGE is trained using the following multistep process:

. Choose initial values for the parameters of the
experts, �1, �2, � � � , �K , and the gate network, �g.
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the two flat regions and the sloped region.



We set all initial variances �1, �2, � � � , �K , to the
variance of the data.

. Choose an initial value of �.

. Minimize the cost function given in (34) until
overfitting on a validation set occurs.

. Increase the value of � and retrain.

5 OVERVIEW oF THE EXPERIMENTS

We demonstrate the SSGE on a time series segmentation

problem. The time series problem addresses the issues of

segmenting multistationary time series discussed in

Section 2, and is a computer generated series obtained by

randomly switching between two nonlinear processes.
This section contains the results for the SSGE model for

time series segmentation. In particular, we show the

behavior of the model on a synthetic time series which

exhibits a random switching between two different regimes.

The SSGE model correctly identifies the subprocesses for

the synthetic time series. The simulation shows:

. The nature of the segmentations that the SSGE
model delivers as a function of the granularity
parameter �. For low values of �, each data point is
associated with each expert, indicating no
specialization. For large values, each data point is
associated with only one expert, indicating that the
expert is overspecializing. Intermediate values
produce segmentations which fall between these
two extremes.

. The learning dynamics of the SSGE model. These
curves include the the expected normalized mean
square error (ENMS) and the variances of the experts.
The ENMS can increase during training, thus indicat-
ing that the model is adjusting its parameters to
change the segmentation. The variances characterize
the predictability of the subprocesses.

. The distributions of the gate outputs as a function of
�. We find that over a large range of �s, the output
distributions indicate that a fixed number of experts
are needed to model the time series. This number
depends on the data set.
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Fig. 5. Gate output for � � 0:865. For this level of segmentation granularity, the experts begin to specialize. Expert 1 models the quadratic map, and

the other two experts model the tanh map. Expert 2 models the extremes in the data and expert 3 models the midrange data. The task of modelling

the low range data shared by expert 2 and 3.



The computer generated time series obeys a Markov
switching process. This process is separable, meaning that
it is possible to distinguish between the two subprocesses
given the input.

6 COMPUTER-GENERATED DATA

6.1 Data: Mixture of Two Processes

We generated a time series which obeys the following
switching process:

dt�1 � 2 �1ÿ dt�2 ÿ 1 if switch � 1 �43�

dt�1 � tanh�ÿ1:2dt � "t�1�;
" � N�mean � 0; var � 0:1� if switch � 0:

�44�

The first process is the logistic map, which exhibits
deterministic chaos (low noise regime), whereas the second
process is a nonlinear autoregressive (AR) process of
order 1. The variance of the added noise is 0.1 which
produces a relatively high noise regime. The switching
dynamics is governed by a first order Markov process with

transition probability 0.02. This means that on average, the

process will undergo a state transition after every 1
0:02 � 50

time steps.
Fig. 2 indicates the nature of the subprocesses. An

important difference between the two subprocesses is the

noise level. The logistic map is noise-free, whereas the tanh

map has injected noise. This characteristic identifies the two

regimes. The second panel in the figure indicates that the

subprocesses are separable given the two inputs �dt; dtÿ1�.
6.2 Architecture and Learning

We used an SSGE model with four lagged inputs to the

gate, two lagged inputs to the experts,1 and 10 tanh hidden

units. We explored other architectures which used different

numbers of hidden units and found that the number of

hidden units was adequate for the problem. This SSGE

model had a total of three experts at its disposal. We know

a priori that the ªcorrectº solution is where the SSGE model

finds the two regimes with two experts, and eliminates the

remaining unnecessary expert.
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Fig. 6. Gate output for � � 1. The gate network separates the dynamics to some extent. The gate output for expert 1 shows that this expert is not

used; only two experts are used. The segmentation is different from the data generating process.

1. A lagged input of order m is defined as a vector xt � dt; . . . ; dtÿm [21].



We find that the SSGE model explores a range of possible
segmentations, at the highest level, varying from three to
one expert, and for a given number of experts, the SSGE
model divides the time series into nontrivial but sensible
components. In contrast to the results for a the same
problem using the standard Gated Experts model, we
obtain a variety of segmentations, whereas [22] obtain a
single segmentation.

6.3 Segmentations and Analysis
We show the results for the SSGE model in the following
plots. Fig. 3, Fig. 4, Fig. 5, Fig. 6, and Fig. 7 are the output of
the gate network as a function of �dt; dtÿ1� along with the
output of the entire SSGE model (gate and experts). We
expect the output of the entire model to closely mimic the
second panel in Fig. 2. We express the quality of the overall
model in terms of the normalized mean squared error which is
computed according to the following formula:

ENMS �
P

k2T �observationk ÿ prediction�2P
k2T �observationk ÿmeanT �2

: �45�

ENMS compares the performance of the model on set T to
simply predicting the mean on that set. For the SSGE model,

we obtained a values of ENMS which varied between 0:14
and 0:2. The reason for this variation is because if the
segmentation is inappropriate, it may be difficult to model
given the network resources. The theoretical lower bound
for ENMS for this example is computed below:

ENMS �
P

k2T �observationk ÿ prediction�2P
k2T �observationk ÿmeanT �2

�46�

� �0:5� � �0� � �0:5� � �0:1�
0:45

�47�

� 0:11: �48�
We obtain the expression in (47) because the transition

probabilities are symmetric so the system will, on
average, spend half its time in the quadratic map, which
has no noise, so the SSGE model should have a perfect
approximation with zero error, and the other half of its
time in the tanh map. The tanh map, unlike the quadratic
map has added noise with variance of 0:1, so the best
performance any approximator can produce will have a
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Fig. 7. Gate output for � � 1:435. For this value of �, the segmentation is virtually perfect: one expert is rarely used, one expert models the parabola,

and the third expert models the tanh data.



variance of 0:1. The denominator of the expression is the

variance of a large (10,000 data points) sample with half the

samples from the quadratic map and the other half from the

tanh map.
Fig. 3 shows the output of the gate network with

� � 0:01. All plots shown here are computed on the test

set (out-of-sample predictions). The SSGE model produces a

segmentation where each data point is equally associated

with each expert. This segmentation treats the entire data

set as a single series.
An interesting situation occurs as we increase the value

of �. Fig. 5 shows the gate output for � � 0:865. The SSGE

model is producing a segmentation which uses all three

experts. The quadratic map is separated from the tanh map,

but the tanh map is divided into three regions: the extreme

where the inputs are near �1; 1�, the midrange, and the low

range where the inputs are near the origin. One expert

models the extreme, one models the midrange, and the two

experts combined model the low range. With this segmen-

tation, the noisy regime is divided into the three regions

which correspond to the three segments of the hyperbolic
tangent curve (see Fig. 4.)

For � � 1, two experts are used which corresponds to the
standard gated experts model. Thus, this figure serves as an
illustration of the gated experts model's performance on
this data set. Fig. 6 shows the gate outputs for this case. This
segmentation is typical for the standard gated experts
model and indicates that the separation of the dynamics is
not appopriate. For larger values of �, we obtain different
segmentations.

We obtain a perfect segmentation of the series for a value
of � � 1:4 as shown in Fig. 7. This segmentation is
characterized by using only two experts, devoting one
expert solely to the quadratic map, and devoting the other
to the tanh map. We explored the neighborhood of � � 1:4
and found that this segmentation occurs in a small
neighborhood of this value (from about 1:35 to 1:45). This
segmentation, although perfect, does not seem to be robust
in variations in �. The SSGE model gives the user the ability
to choose a particular segmentation from a variety of
segmentations.

1278 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 12, DECEMBER 1999

Fig. 8. Learning curves for � � 1:435 on the quadratic-tanh data. The curves on the top panel indicate the variances of the experts, while the lower

panel contains the ENMS for the training set (dotted line) and the test set (solid line). The ENMS increases around iteration 20 and again at iteration 90.



6.4 Learning Curves

The learning curves are included here because they reveal

important features about the learning dynamics of the SSGE

model. The variances show the degree of specialization of

the experts and the search for the regime to specialize in.

The normalized mean squared error (ENMS) shows the

predictive performance of the SSGE model. We find that the

SSGEv model can trade predictive performance for

segmentation performance.
We now show the variances and the ENMS for � � 1:435.

Fig. 8 shows that the model drives one expert to a low

variance (on the order of 10ÿ6). The lower panels of this

figure contain the ENMS as a function of the training time.
Fig. 8 shows the interesting situation where the ENMS

briefly increases during training. As Weigend et al. [22]

points out, these increases are due to the trade-off between

the segmentation and the predictive power. The final ENMS

converges to 0.14, just above the theoretical lower bound.

7 CONCLUSIONS

We have shown that Scale-Sensitive Gated Experts perform

feature refinement for complex nonlinear regression pro-

blems. The feature refinement is governed by a scale

parameter which naturally arises in the model derivation.

Each local regression model models different features of the

regression surface while the gate network partitions the

input-output space to a level of granularity that is set by the

scale parameter.

ACKNOWLEDGMENTS

The authors thank Noureddine Kermiche, Shanming Shi,

Jens Timmer, Inder Batra, and Steve Waterhouse for

valuable comments and suggestions.

REFERENCES

[1] M. Basseville and I.V. Nikiforov, Detection of Abrupt Changes:
Theory and Application. Prentice Hall, 1993.

[2] T.M. Cover and J.A. Thomas, Elements of Information Theory. New
York: John Wiley, 1991.

[3] R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis.
Wiley, 1973.

[4] R. Durbin and D. Willshaw, ªAn Analogue Approach to the
Travelling Salesman Problem Using an Elastic Net Method,º
Nature, pp. 689-691, 1987.

[5] C. Fancourt and J. Principe, ªA Neighborhood Map of Competing
One Step Predictors for Piecewise Segmentation and Identification
of Time Series,º Proc Int'l Conf. Neural Netorks, 1996.

[6] N. Gershenfeld, ªNonlinear Inference and Cluster-Weighted
Modeling,º Proc. 1995 Florida Workshop Nonlinear Astronomy, vol.
1, pp. 1-6, 1995.

[7] S. Guiasu, Information Theory with Applications. McGraw-Hill,
1977.

[8] J. Hertz, A. Krogh, and R.G. Palmer, Introduction to the Theory of
Neural Computation. Reading, Mass.: Addison-Wesley, 1991.

[9] R.A. Jacobs and M.I. Jordan, ªLearning Piecewise Control
Strategies in a Modular Network Architecture,º IEEE Trans.
Systems, Man, and Cybernetics, 1993.

[10] R.A. Jacobs, M.I. Jordan, S.J. Nowlan, and G.E. Hinton, ªAdaptive
Mixtures of Local Experts,º Neural Computation, vol. 3, pp. 79-87,
1991.

[11] M.I. Jordan and R.A. Jacobs, ªHierarchical Mixtures of Experts
and the EM Algorithm,º Neural Computation, vol. 6, pp. 181-214,
1994.

[12] P. McCullagh and J.A. Nelder, Generalized Linear Models. London.
Chapman and Hall, 1989.

[13] K. Pawelzik, J. Kohlmorgen, and K.-R. MuÈ ller, ªAnnealed
Competition of Experts for a Segmentation and Classification of
Switching Dynamics,º Neural Computation, vol. 8, no. 2 pp. 340-
356, 1996.

[14] R.E. Quandt, ªThe Estimation of the Parameters of a Linear
Regression System Obeying Two Separate Regimes,º J. Am.
Statistical Assoc., pp. 873-880, 1958.

[15] C.R. Rao, Linear Statistical Inference and its Applications. New York:
John Wiley and Sons, 1965.

[16] K. Rose, E. Gurewitz, and G.C. Fox, ªStatistical Mechanics and
Phase Transitions in Clustering, Physical Rev. Letters,º vol. 65, no.
8, pp. 945-948, 1990.

[17] D.E. Rumelhart, R. Durbin, R. Golden, and Y. Chauvin, ªBack-
propagation: The Basic Theory,º Backpropagation: Theory, Architec-
tures, and Applications, Y. Chauvin and D.E. Rumelhart, eds., pp. 1-
34, Hillsdale, N.J.: Lawrence Erlbaum Assoc., 1995.

[18] S. Shi, ªModeling the Temporal Structure of Time with Hidden
Markov Experts,º PhD thesis, Dept. of Computer Science, Univ. of
Colorado, 1998.

[19] L.W. Swokowski, Calculus with Analytic Geometry. Prindle Weber
and Schmidt, 1984.

[20] F. Takens, ªDetecting Strange Attractors in Turbulence,º Dynami-
cal Systems and Turbulence, D.A. Rand, and L.S. Young, eds. Lecture
Notes in Mathematics, vol. 898, pp. 366-381, Springer, 1981.

[21] Time Series Prediction: Forecasting the Future and Understanding the
Past. A.S. Weigend and N.A. Gershenfeld, eds., Reading, Mass.:
Addison-Wesley, 1994.

[22] A.S. Weigend, M. Mangeas, and A.N. Srivastava, ªNonlinear
Gated Experts for Time Series: Discovering Regimes and Avoid-
ing Overfitting,º Int'l J. Neural Systems, vol. 6, pp. 373-399, 1995.

[23] Y. Wong, ªClustering Data by Melting,º Neural Computation, vol.
5, pp. 89-104, 1993.

Ashok N. Srivastava received his PhD degree
in electrical engineering from the University of
Colorado, Boulder, in 1996. He is chief technol-
ogist of the Deep Computing Consulting Group
at IBM, where he creates data mining algorithms
for time series forecasting in the finance,
telecommunications, and manufacturing indus-
tries. Before joining IBM, he was a research
scientist at the NASA Ames Research Center,

where he developed methods in fault forecasting and detection and time
series segmentation. He has over 30 publications to his credit, including
editorship of one book, and authorship of two chapters in a textbook.

Renjeng Su received the BSChE degree from
Chenkung University, Taiwan, in 1972, and the
DSc degree in system science and mathematics
from Washington University, St. Louis, in 1980.
He is presently a faculty member in electrical
and computer engineering at the University of
Colorado, Boulder and is also with the Colorado
Center for Information Storage. He is a fellow of
the IEEE.

Andreas S. Weigend received his PhD degree
from Stanford University in 1991, worked on text
mining at Xerox PARC (Palo Alto Research
Center), coorganized the Time Series Competi-
tion at the Santa Fe Institute, was an assistant
professor of computer science and cognitive
science at the University of Colorado, Boulder,
and is currently associate professor of informa-
tion systems at New York University's (NYU)
Stern School of Business. He has published

more than 100 articles in scientific journals, books, and conference
proceedings, and has coedited five books.

SRIVASTAVA ET AL.: DATA MINING FOR FEATURES USING SCALE-SENSITIVE GATED EXPERTS 1279


